Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress

نویسندگان

  • Carolyn R. Schaeffer
  • Tra-My N. Hoang
  • Craig M. Sudbeck
  • Malik Alawi
  • Isaiah E. Tolo
  • D. Ashley Robinson
  • Alexander R. Horswill
  • Holger Rohde
  • Paul D. Fey
چکیده

Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCEStaphylococcus epidermidis is a leading cause of infections related to biomaterials, mostly due to their ability to form biofilm. Biofilm accumulation mechanisms vary, including those that are dependent on specific proteins, environmental DNA (eDNA), or polysaccharide intercellular adhesin (PIA). We found that those isolates obtained from high-shear environments, such as the lumen of a catheter, are more likely to produce PIA-mediated biofilms than those isolates obtained from a low-shear biomaterial-related infection. This suggests that PIA functions as a mechanism that is protective against shear flow. Finally, we performed selection experiments documenting the heterogeneity of biofilm accumulation molecules that function in the absence of PIA, further documenting the biofilm-forming potential of S. epidermidis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...

متن کامل

Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis.

The pathogenesis of Staphylococcus epidermidis is correlated with biofilm formation. We investigated the effect of three common alcoholic skin disinfectants, ethanol, n-propanol and isopropanol, on the biofilm formation of 37 clinical, icaADBC-positive S. epidermidis isolates. In alcohol-supplemented media 18 strains displayed increased biofilm expression. Sixteen of 19 strains were generally i...

متن کامل

Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis.

Biofilm production is an important step in the pathogenesis of Staphylococcus epidermidis polymer-associated infections and depends on the expression of the icaADBC operon leading to the synthesis of a polysaccharide intercellular adhesin. A chromosomally encoded reporter gene fusion between the ica promoter and the beta-galactosidase gene lacZ from Escherichia coli was constructed and used to ...

متن کامل

Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination.

Hemagglutination of erythrocytes is a common property of Staphylococcus epidermidis strains, which is related to adherence and biofilm formation and may be essential for the pathogenesis of biomaterial-associated infections caused by S. epidermidis. In three independent biofilm-producing, hemagglutination-positive S. epidermidis isolates, interruption of the icaADBC operon essential for polysac...

متن کامل

The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin.

Clinical isolates of coagulase-negative staphylococci often elaborate a biofilm involved in adherence to medical devices and resistance to host defenses. The biofilm contains the capsular polysaccharide/adhesin (PS/A), which mediates cell adherence to biomaterials, and another antigen, termed polysaccharide intercellular adhesin (PIA), which is thought to mediate bacterial accumulation into cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2016